

Vision Motion Controller

VPLC710 Series

Motion Controller

Motion Control Card

IO Expansion Module

НМІ

Copyright statement

Zmotion[®]

This manual is copyrighted by Shenzhen Technology Co., Ltd., without the written permission of the Zmotion Technology, no person shall reproduce, translate and copy any content in this manual.

PCIE controller software involved in details as well as the introduction and routines of each instruction, please refer to ZBASIC software manual.

Information contained in this manual is only for reference. Due to improvements in design and functions and other aspects, Zmotion Technology reserves the final interpretation! Subject to change without notice!

Pay attention to safety when debug the machine! Be sure to design effective safety devices in the machine, and add error handling procedures in software. Zmotion has no obligation or responsibility for the loss.

Foreword

Introduction

VPLC710 is a kind of IPC type product based on X86. And it can make use of system of extensible, inheritable, multi-domain, information, openness and visualization through PC - based. EtherCAT bus is configured. In addition, the linkage axes can reach 16 axes. For motion period, the minimal is 500us. Therefore, high-speed and high-precision requirements in motion control areas can be achieved through powerful motion control functions of VPLC710. What's more, it supports many functions for automation industry, such as, DI / DO, pulse control, handwheel acquisition, etc.

This manual mainly introduces VPLC710 basic specification, wiring and installment, debug and maintain.

For Readers

Mechanical Engineer + Electrical Engineer + Software Engineer + Systems
Engineer

Use First Time

For users who use VPLC710 firstly, please read this manual seriously. If there is any question on function and performance, please contact ZMotion engineers, which is good for use this product correctly.

Get this manual

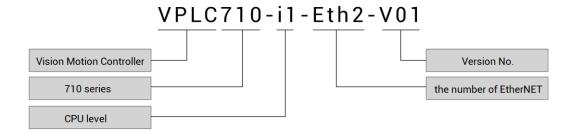
This manual won't brought with product, and there is no notification if updated. Please check in "ZMotion Technologh – Download" for the latest version.

Content

Chapter	l Produc	ction Information	5
1.1	. Produ	uct Information	5
1.2	. Name	eplate & Models	5
1.3	. Optio	onal Configuration	5
1.4	. Produ	uction Appearance	8
1.5	. Spec	ification Parameter	9
	1.5.1.	General Specification	9
Pentium	า 5405U .		9
	1.5.2.	Config Parameter Specification	10
	1.5.3.	IO Interface Specification	12
	1.5.4.	Communication Interface Specification	13
1.6	. Interf	face Definition	14
	1.6.1.	Standard Interface	14
	1.6.2.	RS485/RS232	14
	1.6.3.	Input & Output	15
	1.6.4.	Power Supply	18
Chapter	II Syster	m Configuration	19
2.1	. Conn	nection Configuration	19
2.2	. Main	Properties	19
2.3	. Syste	em Framework	20
Chapter	III Wiring	g Reference	22
3.1	. Basic	c Requirements	22
	3.1.1.	Cable Requirements	22
	3.1.2.	Cable-Arrangment Requirements	23
	3.1.3.	Wiring Requirements	24
3.2	. Term	inal Wiring	24
	3.2.1.	General Input Wiring	25
	3.2.2.	General Output Wiring	25
	3.2.3.	Wiring: Input as Encoder	25
	3.2.4.	Wiring: Output ad PWM	26
	3.2.5.	Wiring: Output as Pulse	26

	3.2.6.	Wiring: RS485	27
Chapter	IV Instal	lment Wiring	28
4.1.	. Instal	lment Environment	28
4.2	. Instal	lment Size	29
4.3	. Instal	lment Method	29
Chapter	V Mainta	ain & Problem Processing	31
•		tain Regularly	
		non Problems	

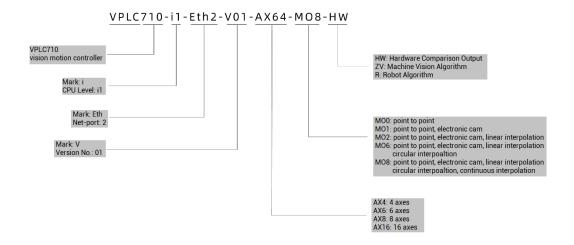
Chapter I Production Information


1.1. Product Information

VPLC710 is a kind of IPC type product based on X86. It is matched with MotionRT software to achieve motion control functions, machine vision algorithm and powerful communication ability on one VPLC710 vision motion controller.

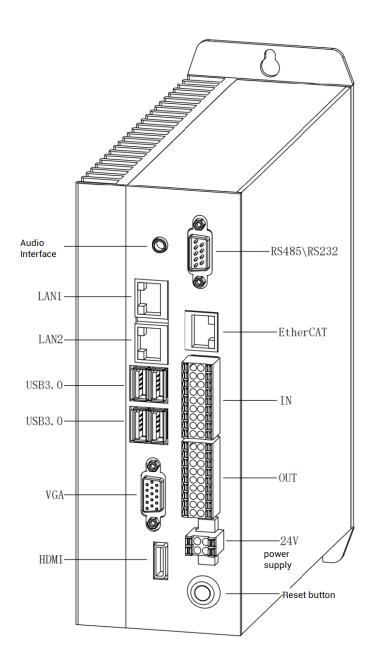
MotionRT is Zmotion motion control real-time kernel software. Now, it has developed to generation 7 "MotionRT7". This software is one independent PC software, it has high compatibility to transplant to Linux or Windows conveniently. And MotionRT is with real-time Basic language, ladder diagram, configuration (HMI) that are easy to use. Whether it is a remote application or a local application (VS, QT and other software development), MotionRT provides a unified standard function interface (zmotion.dll/zmotion.so) to facilitate the transplantation of various external programs.

It is matched with RtSys (ZDevelop) development software to realize real-time onestop-shop development of real-time BASIC, ladder diagram, configuration, machine vision, in this way, development time can be saved.


1.2. Nameplate & Models

1.3. Optional Configuration

You can select below to configurate for software, such as, axis numbers, motion control functions, other functions (PSO, vision, robot, etc.).


64 axes versions can be customized, please contact us.

No.	Configuration	Specification description
		Maximum 4 axes are used.
		MO0: point to point
		MO1: point to point, electronic cam
		MO2: point to point, electronic cam, linear
1	VPLC710-i1-ETH2-V01-	interpolation
'	AX4-MO8	MO6: point to point, electronic cam, linear
		interpolation, circular interpolation
		MO8: point to point, electronic cam, linear
		interpolation, circular interpolation, continuous
		interpolation
		Maximum 6 axes are used.
		MO0: point to point
		MO1: point to point, electronic cam
		MO2: point to point, electronic cam, linear
2	VPLC710-i1-ETH2-V01-	interpolation
	AX6-MO8	MO6: point to point, electronic cam, linear
		interpolation, circular interpolation
		MO8: point to point, electronic cam, linear
		interpolation, circular interpolation, continuous
		interpolation
	VPLC710-i1-ETH2-V01-	Maximum 8 axes are used.
3	AX8-M08	MO0: point to point
	AAU WOO	MO1: point to point, electronic cam

		MO2: point to point, electronic cam, linear				
		interpolation				
		MO6: point to point, electronic cam, linear				
		interpolation, circular interpolation				
		MO8: point to point, electronic cam, linear				
		interpolation, circular interpolation, continuous				
		interpolation				
		Maximum 16 axes are used.				
		MO0: point to point				
		MO1: point to point, electronic cam				
		MO2: point to point, electronic cam, linear				
	VPLC710-i1-ETH2-V01-	interpolation				
4	AX16-M08	MO6: point to point, electronic cam, linear				
		interpolation, circular interpolation				
		MO8: point to point, electronic cam, linear				
		interpolation, circular interpolation, continuous				
		interpolation				

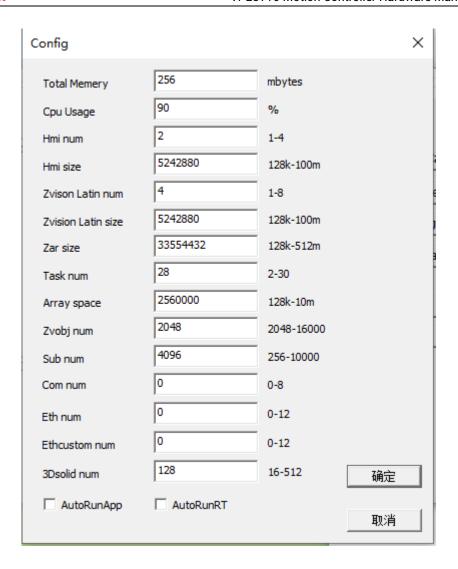
1.4. Production Appearance

Appearance Description:

No.	Name	Numbers	Details
1	Audio interface	1	Output audio
2	LAN1	1	Net port 1, can be configured as EtherCAT
3	LAN2	1	Net port 2, can be configured as EtherCAT
4	USB3.0	2	USB3.0

5	USB3.0	2	USB3.0
6	VGA	1	VGA display interface
7	HDMI	1	HDMI display interface
8	RS485 / RS232	1	RS485 (port1) & RS232 (port0)
9	EtherCAT	1	EtherCAT Bus interface
10	IN	16	Digital inputs
11	OUT	16	Digital outputs
12	24V power supply	2	Power inputs
13	Reset button	1	ON / OFF button

1.5. Specification Parameter


1.5.1. General Specification

ltem	Specification	Details
Name	VPLC710-i1-ETH2-V01	/
CPU	Intel CPU	Pentium 5405U
Storage	SSD solid state disk is	128G (others can be selected)
Storage	built-in	1200 (Others can be selected)
Memory	DDR4	8G
Main Power	24V*3A	Power should be more than 70W,
Maili Powei	24V*3A	voltage is -15%~+20%
Axes	16	EtherCAT bus and 4 local pulse axes
Max Expanded Axes	16	For more axes, please contact us
Pacia Avas Typa	16	EtherCAT bus axes, pulse axes,
Basic Axes Type		encoder axes, virtual axes
High-Speed Out IO	500k	,
Frequency	JUUK	,
High-Speed In IO	500k	/
Frequency	SUUK	/
Normal In IO	10k	/
Frequency	IUK	

Controller Period	1 ma by default	Support SERVO_PERIOD to check	
Controller Period	1ms by default	and adjust period	
VR Save Size when	2048	Ferroelectric memory stores power	
Power Off	2046	failure data for about 10 years	
heat-dissipating	Cooling fin	,	
method	Cooling IIII	/	
Storage	/	-40℃-80℃	
Temperature			
Work Temperature	/	-20℃-60℃	
Work Humidity	/	10% ~ 95% (non-condensation)	
Volume	178mm*186mm*69mm	About 2.277dm^3	
Weight	2KG	/	

1.5.2. Config Parameter Specification

Turn on MotionRT software, it can configure parameters specification according to requirements, please see below image, it shows default parameters, behind indicates supported parameters range, after configurated, click (确认) to save.

Parameter Description:

ltem	Default Specification	Details
		Total memory, including all memories
		that can save data, such as, array
Total Memory	256MB	space, Zar file size, channel size, hmi
		resolution, etc., it is better to set the
		value that is above 200.
Cpu Usage	90%	CPU usage limit
Hmi num	2	Valid Hmi numbers
Hmi size	5242880KB	Resolution of one hmi
ZVision Latin num	4	Vision channel numbers
ZVision Latin size	5242880KB	One vision channel size
Zar size	33554432KB	Zar file size

Task num	28	Max tasks can be executed
Array Space	25600000KB	Distributed array space
Zvobj num	2048	The number of vision object Avobject
Sub num	4096	Max sub functions
Com num	0	Serial ports
Eth num	0	The number of PORT net-port, set value
Eurnam		should be less than the max value
Ethcustom num	0	The number of customized Ethernet
3Dsolid num	128	3D solid numbers
ΛυτοΡυσΛορ	/	Open software automatically when
AutoRunApp		power on
AutoRunRT	/	Run RT software automatically when
Autonulini		power on

1.5.3. IO Interface Specification

ltem	Specification	Details
		16 inputs and 16 outputs (with
		overcurrent protection), and 8 of them
Inner IOs	16+16	are high-speed inputs to be configured
miller 103	10110	as encoder inputs. 16 outputs are high-
		speed outputs to be configured as
		pulse outputs.
Max extended IOs	1024 inputs + 1024	It is matched with expansion module to
Max exterided iOS	outputs	expand IO.
Latches	4	4 inputs can be configured as latch input,
Lateries	4	number is IN0-3.
Encoder	2	Reuse input, number is IN0-2, IN4-6
PWM	4	4 outputs can be configured as PWM,
PVVIVI		number is OUT0-3.
		4 outputs can be configured as hardware
Hardware	4	comparison output (PSO function), which
comparison output	4	are compatible with precision output,
		number is OUT0-3.

Pulse output	4	Reuse output, number is OUT8-15.
IO nower input	24V/DQ in	IO needs to be supplied by external power
IO power input	24V DC input	independently.

1.5.4. Communication Interface Specification

Item	Specification	Details	
		Standard 1000M Ethernet interface RJ45, it can be	
LAN	Communication	configured as EtherCAT.	
LAN	speed 1000Mbps	LAN1 Ethernet Factory IP Address: 192.168.0.11	
		LAN2 Ethernet Factory IP Address: 192.168.1.11	
EtherCAT	Communication	Industrial communication EtherCAT master station	
Ethercar	speed 1000Mbps	interface, standard Ethernet interface RJ45.	
		Support MODBUS_RTU standard protocol, master	
RS232/	Several kinds of	station and slave station are valid, default is slave	
RS485	Baud rate station. And default communication parame		
	Baud rate 38400, data bit 8, no parity.		
VGA	Standard interface	Connect VGA interface externally to show equipment.	
HDMI	Standard interface	Connect HDMI interface externally to show equipment.	
		Both support "plug and then use immediately" and	
USB3.0	Standard interface	"hot plug in and out", it is below compatible with	
		USB2.0.	

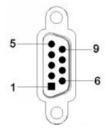
Note:

- EtherCAT specialized minimal communication period is 500us, the maximum period is 4000us, the accumulative is 500us, and the max equipment number is 16, EtherCAT bus drive and EtherCAT bus expansion module can be connected.
- ➤ LAN Ethernet both can be configured as EtherCAT custom port, the minimal communication period of EtherCAT custom port is 1000us, the maximum is 4000us, the accumulative is 500us, and the max equipment number is 16.

1.6. Interface Definition

1.6.1. Standard Interface

The USB3.0 interface, VGA interface, HDMI interface, LAN interface, audio interface, and EtherCAT interface are all standard interfaces, which can be connected and used through standard wiring cables.


1.6.2. RS485/RS232

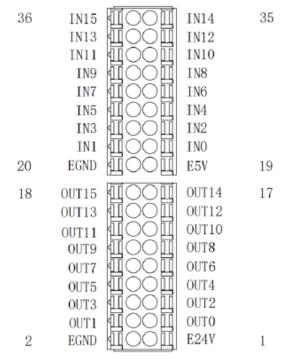
VPLC710 series support RS485 protocol local IO communication and RS232 protocol local debug.

Before use, it needs to configure the number of "com num" and related parameters on the "Config Window" of the MotionRT software.

By default, the MODBUS_RTU standard protocol is adopted, and at the same time, it supports configuration as no-protocol mode, and adopts custom communication.

Both support configuration as master or slave.

PIN	Name	Description
2	RS232-RXD	RS232, receive data
3	RS232-TXD	RS232, send data
4	RS485A	RS485 + communication
5	GND	Power ground
7	RS485B	RS485 - communication
9	DC5V	5V power output
1, 6, 8	NC	Spare


Serial port communication specification:

ltem	RS232 (port0)	RS485 (port1)
Maximum	115200(bps)	115200(bps)
Communication Rate	113200(bps)	115200(bps)
Terminal Resistor	No	No
Topological Structure	1 to 1	Daisy Chain Topology
The number of nodes	1	127
can be extended	l l	121
	The longer communication	The longer communication
Communication	distance is, the lower	distance is, the lower
Distance	communication rate is, and	communication rate is, and
	maximum of 10m is	maximum of 100m is
	recommended.	recommended.

1.6.3. Input & Output

General IO includes 16 inputs and 16 outputs (both are NPN type), when the number is not enough, expansion is valid.

IO needs to connect 24V DC externally, following shows IO terminal distribution:

IO terminal definition form:

PIN	Signal	Description	Note
1	E24V	External power 24V input	IO Power terminal
2	EGND	External power ground	10 Power terminal
3	OUT0	Output 0, PWM0	
4	OUT1	Output 1, PWM1	
5	OUT2	Output 2, PWM2	
6	OUT3	Output 3, PWM3	1. Outputs all are high-speed
7	OUT4	Output 4	outputs, but they are
8	OUT5	Output 5	general outputs by default.
9	OUT6	Output 6	2. OUT0-3 can be configured
10	OUT7	Output 7	as PWM output or pulse
11	OUT8	Output 8, single-ended DIR3	output in ZDevelop, at the
12	OUT9	Output 9, single-ended PUL3	same time, hardware comparison output or
13	OUT10	Output 10, single-ended DIR2	comparison output or precision output are valid.
14	OUT11	Output 11, single-ended PUL2	3. OUT8-15 can be configured
15	OUT12	Output 12, single-ended DIR1	as 4 pulse outputs.
16	OUT13	Output 13, single-ended PUL1	as 4 puise outputs.
17	OUT14	Output 14, single-ended DIR0	
18	OUT15	Output 15, single-ended PUL0	
19	E5V	5V power output	Supply power for external
20	EGND	External power ground	equipment
21	IN0	Input 0, latch R0, encoder EA0	
22	IN1	Input 1, latch R1, encoder EA0	
23	IN2	Input 2, latch R2, encoder EA0	1. INO-7 are all high-speed
24	IN3	Input 3, latch R3	inputs, but they are general
25	IN4	Input 4, encoder EA1	inputs by default.
26	IN5	Input 5, encoder EB1	2. IN0-3 can be configured as
27	IN6	Input 6, encoder EZ1	latch input in ZDevelop.
28	IN7	Input 7	3. INO-2 and IN4-6 can be
29	IN8	Input 8	configured as 2 encoder
30	IN9	Input 9	inputs.
31	IN10	Input 10	
32	IN11	Input 11	

33	IN12	Input 12
34	IN13	Input 13
35	IN14	Input 14
36	IN15	Input 15

Only 24V encoders can be used, and the pulse input frequency of encoder 0 and encoder 1 is up to 500kHz, which can be connected to high-speed encoders, the others are ordinary inputs, and the pulse input frequency is up to 10kHz.

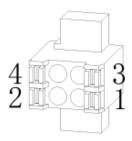
The frequency of the high-speed output port is 500KHz.

The number after the pulse output and encoder input is the default axis number, and the ATYPE command is used to switch whether the IO port is a general-purpose IO (ATYPE=0 of the target axis is general-purpose IO, ATYPE=1 is pulse output, ATYPE=3 is encoder input, ATYPE=4 is pulse output + encoder input).

→ High-speed Digital Output Specification

Item	Specification
Channel	16 (OUTO-OUT15)
Mode	Transistor NPN type, OD output
Voltage level	Local power ≤ 36V
Max output current	+300mA
Max leakage current when off	25μΑ
Respond time to conduct	1µs (resistive load typical value)
Respond time to close	3μs
Isolation method	Capacitive isolation
Overcurrent protection	Support, action current is 600mA
Respond time	Below 0.5ms

→ High-speed Digital Input Specification


Item	Specification
Channel	8 (OUTO-OUT7)
Mode	NPN type
Voltage level	DC24V (-15%~+20%)
Current to input (typical value)	6.8mA

The voltage to open	<15V
Minimal current	2.3mA
Impedance	3.3ΚΩ
Overcurrent protection	Capacitive isolation
Respond time	Below 10ms

→ General Digital Input Specification

Item	Specification
Channel	8 (OUT0-OUT15)
Mode	NPN type
Voltage level	DC24V (-15%~+20%)
Current to input (typical value)	4.8mA
The voltage to open	<14.5V
Minimal current	1.8mA
Impedance	4.7ΚΩ
Overcurrent protection	Capacitive isolation
Respond time	Below 10ms

1.6.4. Power Supply

PIN	Description	
1	DC24V input	
2	DC24V input	It can use 24V*3A to 36V*2A, total
3	GND	power should be above 70W.
4	GND	

Chapter II System Configuration

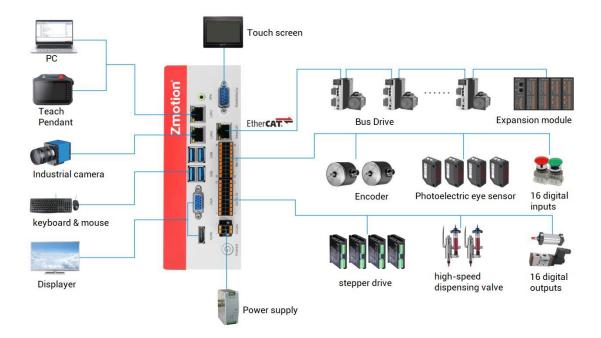
2.1. Connection Configuration

External equipment & Software configuration:

- 1. Wired mouse and keyboard.
- 2. Displayer.
- 3. WIN10 operation system (technical version), ZDevelop development platform, all kinds of operation systems of machine tool industries.

Note: ZDevelop development platform can be downloaded from our website, or contact us. For host computer development, please contact us for function library file.

There is MotionRT software built in this product, there is no operation system, users need to install the operation system by yourselves.

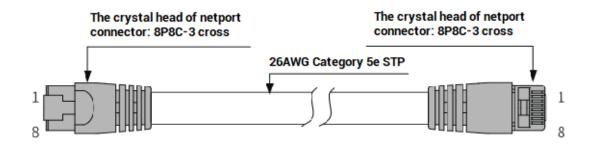

2.2. Main Properties

- Support motion control function and machine vision function.
- Up to 16 axes motion control (EthercCAT axis / encoder axis / pulse axis / virtual axis)
- Encoder interface supports encoder position measurement, which can be configured as handwheel input mode.
- ♣ 16 NPN outputs, some outputs can be configured as hardware comparison output, PWM, pulse axis and other functions. The output current can reach 300mA, which can drive sone valve solenoid directly.
- ♣ 16 NPN inputs, some high-speed inputs can be configured as latch and encoder.
- There is one 100M EtherCAT interface, and 1024 isolated inputs and 1024 isolated outputs can be extended through EtherCAT bus.
- There are four USB3.0 interfaces, it is compatible below with USB2.0 and USB1.0 interfaces, which can be connected to camera, mouse, keyboard, U disk and other USB external equipment.

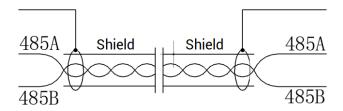
- There is one RS485/RS232 interface.
- There are two 1000M Ethernet interfaces that support multiple kinds of expansion applications, which can connect computer, camera or other network equipment.
- There is one HDMI interface that supports high-definition display.
- There is one VGA interface that supports standard displayers.
- Supports x86 system platform.
- Up to 16 axes linear interpolation, any space circular interpolation, helical interpolation, spline interpolation, etc.
- Support electronic cam, electronic gear, position latch, synchronous follow, virtual axis, etc.
- Support hardware comparison output (HW_PSWITCH2), hardware timer, precision output in motion.
- Support pulse closed-loop, pitch compensation, etc.
- Support ZBasic multi-file and multi-task programming.
- A variety of program encryption methods to protect the intellectual property rights of customers.
- Support power failure detection.

2.3. System Framework

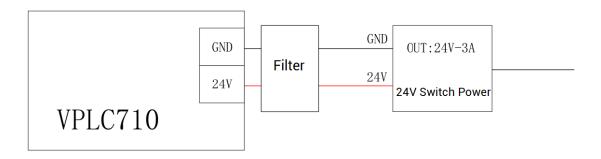
The VPLC710 series enters the general machine tool in the form of an industrial computer. The specific application requires an external displayer for display, a keyboard and mouse for interaction, an IO module is for general IO input and output functions, and an EtherCAT bus is to connect the servo drive and remote IO modules. LAN interface is to connect network, camera, etc.



Chapter III Wiring Reference


3.1. Basic Requirements

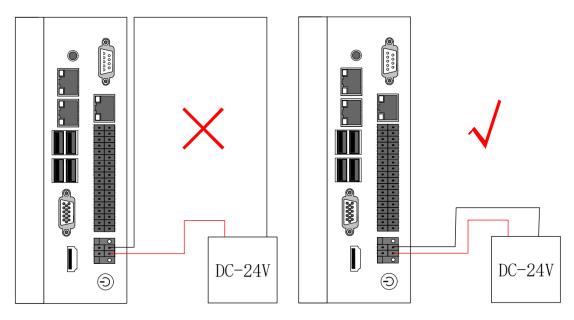
3.1.1. Cable Requirements


1. The network cable adopts Category 5e STP, and the crystal head has a metal shell to reduce interference and to prevent information from being eavesdropped.

2. RS485 must be twisted pair with shield.

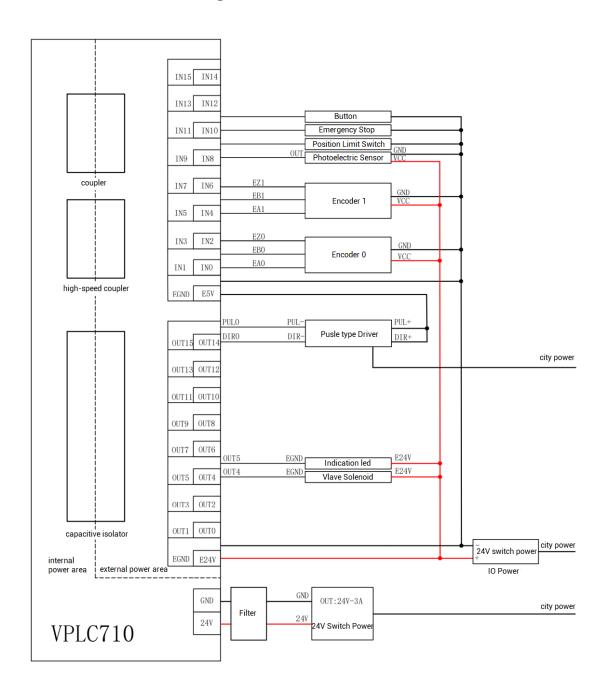


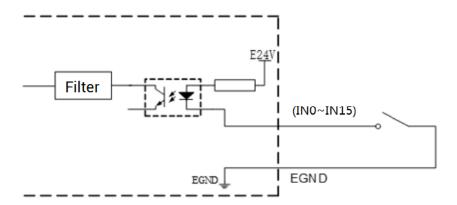
- 3. HDMI and VGA should be with good quality to avoid display problem in running proess.
- 4. The power cable is made of high-power wire. In a harsh environment, a filter or a magnetic ring should be added between the power supply and the controller, which is close to the power supply of the controller.



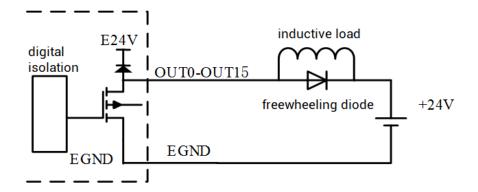
3.1.2. Cable-Arrangment Requirements

 Signal lines and power lines should be routed separately, try to adjust the position of controllers and drivers in the cabinet, and distribute signal lines and power lines in different areas.

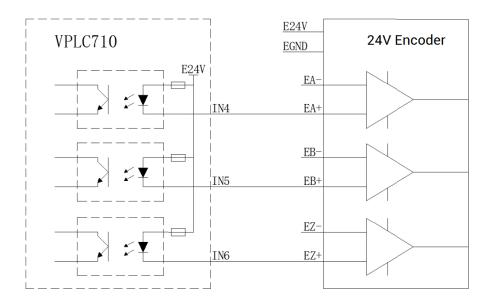

2. The positive and negative lines of the power line are routed side by side to avoid interference caused by a large loop area.


3.1.3. Wiring Requirements

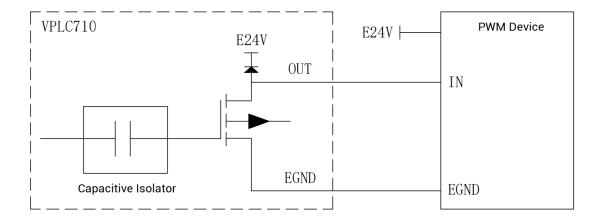
- 1. The cable that is with shield should connect two sides of shield layer to GND.
- 2. Power that supplies the power should connect to the grounding cable.


3.2. Terminal Wiring

3.2.1. General Input Wiring


3.2.2. General Output Wiring

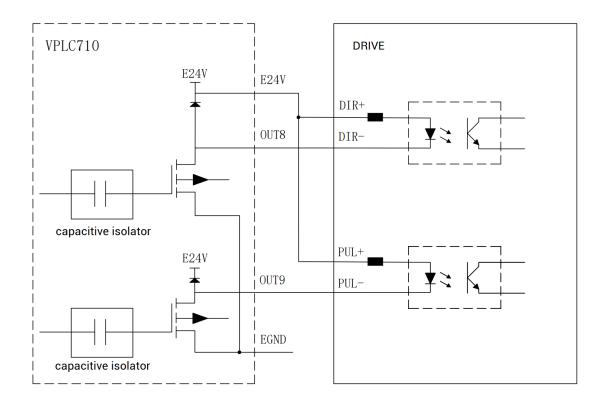
3.2.3. Wiring: Input as Encoder


VPLC710 has two 24V single-ended encoder inputs on board.

This example uses IN4-6 to connect the encoder for illustration. After the wiring is completed and configured with ATYPE(1)=3, IN4 is EA1, IN5 is EB1, IN6 is EZ1, and the corresponding encoder axis number is 1.

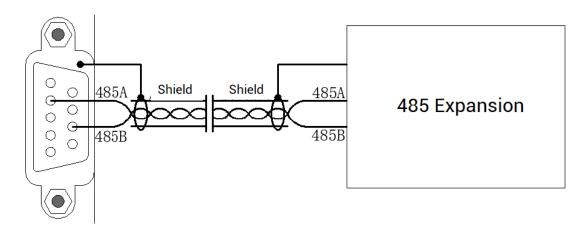
3.2.4. Wiring: Output ad PWM

Pay attention to select the OUT ports that support PWM function, OUT0~OUT3.



3.2.5. Wiring: Output as Pulse

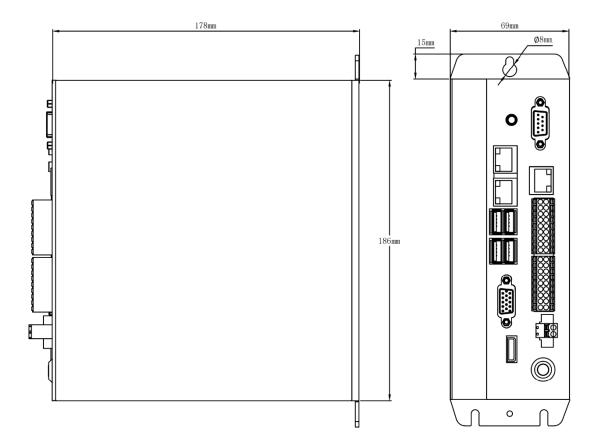
VPLC710 has 4 single-ended pulse outputs on board.


This example uses OUT8 and OUT9 to connect the driver to illustrate. After OUT8 and OUT9 are configured with ATYPE(3)=1, OUT8 is DIR3, OUT9 is PUL3, and the corresponding pulse driver axis number is 3.

For drivers, E24V or E5V can be connected according to specific specification.

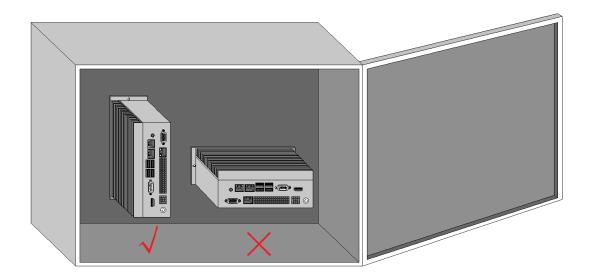
3.2.6. Wiring: RS485

485A is connected to 485A, 485B is connected to 485B, shield layer is connected to external shell.

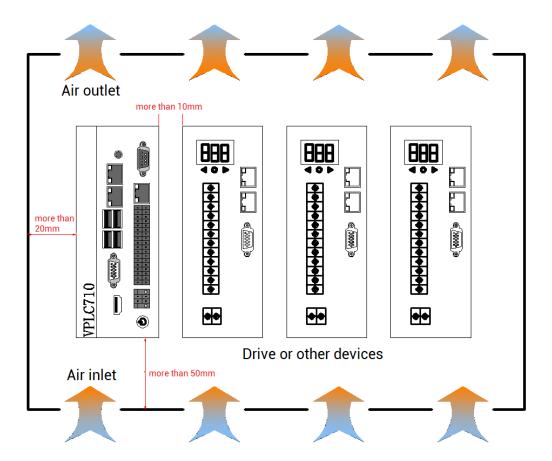

Chapter IV Installment Wiring

4.1. Installment Environment

- Ambient temperature: The ambient temperature has a great influence on the life of the controller, and the operating environment temperature of the controller is not allowed to exceed the allowable temperature range (0°C to 55°C).
- Install the controller vertically on the surface of the flame-retardant object in the installation cabinet, and there must be enough space around it for heat dissipation.
- Please install it in a place that is not easy to vibrate. Vibration should not be greater than 4.9m/s^2. Take special care to stay away from equipment such as punch presses.
- Avoid placing in direct sunlight, humidity, and water droplets.
- Avoid installing in places with corrosive, flammable and explosive gases in the air.
- Avoid installing in places with oil and dust, and the pollution level of the installation place is PD2.
- This product is installed in the cabinet and needs to be installed in the final system. The final system should provide corresponding fireproof enclosures, electrical protection enclosures, and mechanical protection enclosures, etc., in compliance with relevant IEC standards.


Item	Parameters
Work Temperature	-20℃-60℃
Work relative Humidity	10%-95%RH non-condensing
Storage Temperature	-40°C ~ 70°C (not frozen)
Storage Humidity	Below 90%RH (no frost)
Vibration	Below 4.9m/s^2
Shock	Below 19.6m/s^2
Degree of Protection	IP20

4.2. Installment Size



4.3. Installment Method

Secure the controller to the mounting surface with two M5 screws. When installing, please pay attention to the installation position. Please face the front of the controller (the actual installation surface of the operator) to the operator and make it perpendicular to the wall.

Due to the large power consumption and volume of this product, in order to facilitate ventilation and heat dissipation and easy module replacement, a corresponding distance should be reserved between the upper and lower parts of the module and the building and surrounding components, as shown in the figure:

Chapter V Maintain & Problem Processing

5.1. Maintain Regularly

Please regularly check the places that are difficult to check during operation. Always keep the controller in a clean state, effectively remove the dust on the surface of the product, and prevent the dust from entering the product, especially metal dust.

Check item	Check content	Inspection standards
Whole machine	Whether there is accumulation of garbage, dirt and dust on the surface.	 Check whether the power distribution cabinet is powered off. Vacuum away trash or dust from touching parts. When the surface dirt cannot be removed, wipe it with alcohol and let it dry and evaporate completely.
Cable	Check whether the power line and connection are discolored. Whether the insulation layer is aged or cracked.	 Replace cracked cables. Replace damaged connection terminals.
Outside of solenoid connector	Whether the suction is not firm or makes abnormal noise during the action. Whether there is a short circuit, water pollution, expansion, rupture of peripheral devices	Replace abnormal components.
Fan channel port	Whether the air duct and heat sink are blocked. Whether the fan is damaged. Whether the control	 Clean the air duct. Change the fan. Clean the foreign objects on the
Control circuit	components have poor contact.	surface of control lines and connection terminals.

whether	the	terminal	2.	Replace	damaged	and	corroded
screws are loose.				control cables.			
Check	wheth	er the					
insulation of the control							
cable is cracked.							

5.2. Common Problems

Problems	Suggestions				
Motor does not rotate.	 Check whether the ATYPE of the controller is correct. Check whether hardware position limit, software position limit, alarm signal work, and whether axis states are normal. Check whether pulse mode and pulse mode of drive are matched. Confirm whether controller sends pulses normally through software test. 				
The controller works normally, the pulse is sent out normally, but the motor does not rotate. The motor can be rotated, but in malfunction	 Check the connection between the drive and the motor are correct, or their communication signal is good Ensure drive works normally, no alarm. Check deceleration and speed exceeds the equipment limit Check the output pulse frequency exceeds the limitation of drive receive. Check the controller and the drive is properly grounded, anti-jamming measures are good. On the pulse and direction signal output port, current-limit resistance used in photoelectrical isolation circuit is too large, operating current is small 				
Motor can be controlled, but appears oscillation or exceed limit.	 Check drive parameter setting. In the application software, acceleration and deceleration time and motion speed are set improperly. 				

	1.	Check whether IO power is needed.			
The output does not work.		·			
		Check whether the output number matches the ID of			
		the IO board.			
		Check whether IO power supply is normal.			
No signals detected for	>	Check whether signal electricity level is matched			
input.		with input or not.			
	>	Check whether input number is matched with IO			
		board ID or not.			
	A	Check whether IO power supply is normal, IO power			
No reactions when		also is needed for IO board.			
operating outputs	>	Check whether output number is matched with IO			
		board ID or not			
	>	Check whether the light of Ethernet is ON?			
Fail to connect through		Check whether direct connection of cable is used			
		and computer doesn't support auto-cross.			
Ethernet.	>	Check whether controller IP address is modified.			
		Check whether PC net card IP address and controller			
		IP are in the same net segment.			
Fail to connect through	\wedge	Check whether serial port parameters are modified			
_		by running program. It can check all current serial			
serial port.		port configuration through "?*SETCOM".			